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A discussion is given of the derivation of the Kubo-Green formulas. A refor- 
mulation of the derivation is presented, which leads to an exact result, involving 
field-dependent transport coefficients. Kubo's result is obtained as the first-order 
term in a resolvent expansion. For the general Liouville operator case, in accord 
with van Kampen's objections, it cannot be argued that the other terms are 
negligible. However, for a large class of systems, this can be justified. This is 
shown for systems where dissipation is due to weak interactions, amenable to 
the Van Hove limit, and having sufficiently short relaxation times. 
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1. "I'HE L I N E A R I Z A T I O N  P R O B L E M  

Linear  response  theory,  as fo rmula ted  several  decades  ago by K u b o ,  ~1~ 
Green,  (2) and  others,  p rovides  very general  express ions  for t r anspor t  coef- 
ficients in terms of  cor re la t ion  functions,  response  functions,  or  r e laxa t ion  
functions.  A survey of  K u b o ' s  results  was given previously /3)  The  

de r iva t ion  of K u b o ' s  basic result  is so s imple tha t  it can be s ta ted  in a few 
lines. 

Cons ide r  a system subject  to an  externa l  field F(t) .  Its H a m i l t o n i a n  
can be expresed in the form 

H F =  H -  A F ( t  ) (1.1) 

Here  H is the system Hami l ton i an ,  being in general  of the m a n y - b o d y  type, 
i.e., expressible  as an o rdered  power  series of  c rea t ion  and  ann ih i l a t ion  
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operators and n-body interaction matrix elements; -AF( t )  is the external 
field coupling operator, with A being a system operator and the force F(t) 
being a c-number. For example, in an electric field, A and F are vectors, 
AF--, A. F, with A =Y~ (r~-rf,~q) and F = qE, q being the charge of the 
particles at positions ri while ri, eq are the positions of the particles prior to 
switching on the field. The yon Neumann equation for the density operator 
in a system with (1.1) reads 

ap/at + (i/h)[H, p] = (i/h) u(t) F(t)[A, p] (1.2) 

where it is assumed that the field is "switched on" at t = 0 as expressed by 
the unit step function u(t). With the Liouville superoperator 2,~K~ 
(1/h)[H, K], Eq. (1.2) also reads 

ap/~t + i~o  = (i/h) u(t) F(t)[A, p] 

Its solution is expressible by the Volterra integral equation 

(1.3) 

p(t) = Peq + (i/h) f~ e g~r t') F(t')[A, p(t ')] dt' (1.4) 

For the response of an operator B due to the field switched on at t = 0, we 
then find 

~ AB(t) ) = Tr[p(t)B] - Tr(peq B) 

=(i/h) Tr{ fodt 'Be- i~( t -c lF( t ' ) [A,p( t ' ) ]}  (1.5) 

The assumption of linear response theory is now that on the right-hand 
side p(t') can be replaced by Peq, the density operator prevailing in 
equilibrium, prior to the switching on of the field. Equation (1.5) then 
expresses a linear response. With minor manipulation using the property of 
cyclic permutivity of the trace, one now obtains 

( AB(t) )=(1/lii) Tr {f~ dz [A, B(t-- z)] peqF(z)} (1.6) 

where B(t) is the Heisenberg operator eiU"B=eim/hBe im/h. Letting b(s) 
and f (s)  be Laplace transforms of (AB(t))  and F(t), respectively, we can 
write b(s)=)~BA(S)f(s), where )~(s) is the generalized susceptibility. In the 
frequency domain we find, with s = ico + 0, 

XoA(ie)) = (1~hi) dt e-iO~t( [A, B(t)] )eq (1.7) 
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~' )eq being the equilibrium average. One can also obtain the "Kubo form" 
or the "correlation form" (see ref. 3, Section 3). One then finds with a little 
algebra, and setting fl = 1/kT, 

ZBA(Z(J))=;O "~~ dte i~ 0 d~' <z~(-ih~')B(l))eq (1.8) 

A more symmetrical result is obtained if one considers the response of a 
current flux B. Writing JB--B and JA=~i,  one then finds for the 
generalized conductivity 

LBA(ie))=fO dte-i~ d~ ' (JA(--ihfl')JB(t))eq (1.9) 

which is the standard Kubo-Green formula. For "classical frequencies" 
he) ~ kT, this reduces to 

fo LBA(ie))= fl dte i~ (1.t0) 

Note that operators without argument, such as JA, are Schr6dinger 
operators. 

The simplicity of this derivation is at the same time the cause of its 
beauty and of its circumspectness. How can so general a result be obtained 
with so little physics, no molecular dynamics, etc.? Indeed, it cannot. 
Criticism against this derivation was first voiced by van Kampen. (4~ 
Further criticism was added by Van Vliet. (3~ The culprit apparently is the 
linearization assumption, between Eqs. (1.5) and (1.6). Such a linearization 
simulates randomization (van Kampen) and thereby simulates dissipation. 
But nowhere is the dynamics commensurate with dissipation introduced 
(Van Vliet). Basic to the problem is that no time scales (transition or 
collision duration times %, relaxation times between collisions %, 
hydrodynamic times %) emerge in the treatment (see Fig. 1). Therefore, in 

72- t 

.-. T r > r z  

Jill ~ T 2 

Tr T h 

iO-15sec << 10-12 se c << 10-6sec 

Fig. 1. The different regimes in time constants. 
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principle the linearization must work over all macroscopic time, say 1 sec. 
Van Kampen clearly shows that this is an impossibility, limiting the electric 
field to E~10-1eV/cm! See also his example with the "pin-ball 
machine"--or, in more scientific language, the Galton board. (4) 

The question therefore is posed: in what sense is linear response theory 
correct? The problem was discussed by Cohen at a 1981 statistical 
mechanics meeting. (5) It was there shown that, with appropriate dynamics, 
Kubo's result can be validated for a dilute gas. Subsequently, we 
generalized Cohen's result for many-body quantum systems, with 
Hamiltonian H =  H ~  2V, where 2V represents dissipation due to weak 
interactions. This is the subject of this paper. It will be shown that in the 
thermodynamic limit plus the Van Hove limit the linearization of linear 
response theory can be justified. Both in Cohen's case and in the general 
case of quantum systems considered here, it is clear that extensive physical 
arguments must supplement the deceivingly simple derivation of Eqs. 
(1.1)-(1.10). First, however, the derivation is reformulated in a form 
appropriate for later discussion, in Section 2. 

2. AN EXACT RESULT 

Let us write the yon Neumann equation as 

~p/Ot + iSfr(t ) p(t) = 0 

where now 5fr(t) is the Liouville operator pertaining 
Hamiltonian (1.1), i.e., 

to 

(2.1) 

the full 

(JB(t) ) = Tr ([7 {exp [--i f] ~q~r(t') dt']} peq) (2.4) 

We now need an appropriate form for the propagator 
W ( t ) - e x p [ - i ~  ~LPF(t' ) dt'] with ~ r  a time-dependent superoperator 
acting in Liouville space. (6) This can be done similarly as for the evolution 

YF(t)K= (1/h)[H-- AF(t), K] = ~ K -  (l/h) F(t)[A, K] (2.2) 

The formal solution of (2.1) is with the field being switched on again at 
t-=0, 

p(t)=exp - i  ~F(t')dt' Peq, t~>0 (2.3) 

For the current JB =/~ associated with the flow of an observable 
represented by the operator B, this then yields 
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operator U(t) in ordinary quantum mechanics when the Hamiltonian 
involves a time-dependent perturbation. ~6~ Thus, consider the differential 
equation 

dW(t) 
dt = -i~Z':it) Wit)= - [ i ~  + ~ ( t } ]  W(t) i2.5) 

where SF(t)= ~ -  i~[(t) with [see (2.2)] 

~ ( t )  K= (1~hi) r(t)[ A, K] (2.6) 

Now let W~ i~t)  or dW~ = - i ~ W  ~ Let further 

w,( t )  = w~ w( t )  (2.7) 

~6(t) = w~ ~ ( t )  w~ (2.8) 

We then obtain from (2.5), (2.7), and (2.8), 

dW,(t) dt = iSflW~ W(t) - W~ + dt( t ) ]  W(t) 

= -vv~ ~zi t )  vv(t) 

= -W~ Jg(t) W~ W~(t) 

= - J6 ( t )  Wl(t) (2.9) 

with solution 

w~(t)  = 1 - dz ~ ( z )  w~i~) (2.10) 

This can be further iterated, so we obtain 

Wi(t)=l+ ~ (--1) n m}n)(t) {2.11) 

where we have the time-ordered integrals 

fo fo fo W["~(t) = dr, d~,_~ ... &l  Jg~(z,,)...d{iizl) (2.12) 

Finally, with the inversions of (2.7) and (2.8), 

wi t )  = w~ w, ( t )  (2.13) 

J#(t) = W~ J,'6(t) W~ (2.14) 
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Equations (2.10)-(2.14) now yield the Volterra integral equation equivalent 
to (2.5) 

W(t)=e ~ -  dr e-i~<~ ~1 rig(v) W(r) (2.15) 

and also 

where 

W(t)=e-~S' + ~ ( - 1 )  ~ W<~)(t) (2.16) 
n = l  

x e-i~e(~-~")dg(r~) e-i~e(~"-~,_~) ~/r l)"" 

x e ia~ ~ J/l(rl) e -i2"~1 

For present purposes, we need (2.15), The result (2.4) becomes 

(2.17) 

fo <Js(t)>=Tr[[~e-'~'p~q] - dvTr[/~e i~('-~)J/g(r) W(r)p~q] . (2.18) 

For Peq, take the canonical ensemble as in Kubo's theory, Peq = e--#H/~. 
Since e--i'~tPeq=Pe q and <J~>eq=0,  the first term in (2.18) disappears. 
With the definition (2.6) for ~ ' ( r )  the above becomes 

(J~(t) > =(1~hi) f~ dr Tr {/~ e i~(t-~) F(r ) [  W(r) A]} P e q ,  

=(l/hi) I~ dr Tr {[exp { - i  I~ ~F(r')d~'} p~q,A]ei~(t ~) JBF(r)} 

(2.19) 

Here we used Lemma 4 of ref. 7. The above result is exact. However, it is 
not of the form S~ dr ~baA(t -- r) F(r); therefore, there is no general nonlinear 
sinusoidal response LBA(io~). Note that if on the right-hand side Lf r is 
replaced by 5 ~ Eq. (2.19) reduces correctly to the linear response result 
(1.6). 

A simpler exact result occurs if consideration is restricted to the dc 
conductivity, ~o-~ 0. Thus, let in (2.2) F(t)= F be constant. For (2.4) one 
now finds 

(JB(t))  = TriBe - ~ r '  P e q ]  = Tr[p~q ei~et~] = (ei'-9~ (2.20) 
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Here a result analogous to Lemma 4 of ref. 7 was employed 

Tr [ Ce - iY~tD ] = Tr [Ce - iHFt/ti De iHFt/h ] 

= T r [ D e  iHrt/h Ce --iHFt/h] = Tr[De i~r 'C]  (2.21) 

Next, consider the resolvent of e i~e~t, defined as the Cauchy principal value 
if s--* 0. One has the identity 

1 1 1 l 
s i ~ - J /  s i ~  t -s---2-~r  (2.22) -- -- s - - i 2 # - - J g  

or by inverse Laplace transform 

f' C i ~ I ' t =  e i~ t  ~- d~ e i ~ ( ~ -  ~) , /~e  i~Fr (2.23) 
~0 

corresponding to the complex conjugate of (2.15). It can also be iterated 
similar to (2.17). Substitution of (2.23) into (2.20) yields 

;o (JB( t )  ) = (e i~ tJB)eq  + dr (ei~(t-~)d/teiSe~~JB)eq (2.24) 

The first term is again zero. For the second term, using (2.6), we have 

( J B ( t ) )  = (F/hi) dr ( e  ~e(' ~ [A ,  e ~ J B ] ) e q  (2.25) 

Furthermore, 

Tr { Peq ei~(~ - ~) [A, e'~F~Je] } = Tr { [A, e ~ J s ]  e - i~e(, - ~p~q } 

= Tr{ [e -/~H, A] e ~ J , } / ~  (2.26) 

Now, by Kubo's identity [ref. 3, Eq. (3.21)] 

] = hi f :  dfl' e -[1HJA( - -  ihfl') (2.27) [e ~ ~ m A 

where/3-- 1/kT. This and (2.26) in (2.25) yields 

(J.(t))=Ff] dr f: dfl' (JA(--ihfl')ei~FrJB)eq (2.28) 

For he> ~ kT,  the argument of JA can be taken to be zero. Letting further 
t-+ ~ ,  w,e find for the dc conductivity 

f0 LeA=/~ ~o~lim lihm dr <JACi~'FrJB>eq (2.29) 
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where we added the thermodynamic limit N, ~2--* oo with finite particle 
density. The exact result (2.29) replaces the linear response result (1.10). 
For the electrical conductivity, the current density J = q  ~2 vi/s = q A / ~ ,  
while F = qE. If #, v refer to Cartesian coordinates, then 

a,v = fl t+lim~ limth s f~ d~ (Jveia~F*J~)eq (2.30) 

3. W E A K  I N T E R A C T I O N S  A N D  T H E  V A N  H O V E  L I M I T  

As noted in Section 1, the reduction of (2.29) to (1.10) cannot be 
justified when nothing about the dynamics of the system is specified. Also, 
the existence of the integral (1.10) cannot be proven unless decay of the 
correlation function (JA ei2"tJ B)eq is established.<3) Therefore, appropriate 
tenets of the system must be introduced. While no necessary conditions for 
the validity of Kubo's results are known, we indicate here that sufficient 
conditions involve a large class of systems in which dissipation is due to 
weak interactions; i.e., further to (1.1), we write 

HF= H--  AF(t)  -~ H ~ + 2 V -  AF(t) (3.1) 

Here 2V is the randominizing agent which causes transitions W~/ among 
the states [7) of H ~ which part describes the motion of interest. Here I~) 
may be a quantum mechanical many-body state or a classical state defined, 
e.g., in four-vector space. (8) While the dichotomy of the Hamiltonian H is 
microscopically rather arbitrary, the macroscopic description of physical 
systems usually delineates the two parts in a natural fashion. For instance, 
in a solid, H ~ is made up of the electron gas and phonon gas energies, 
while 2 V describes electron-phonon interaction. Generally H ~ is the largest 
Hamiltonian that can be diagonalized; 2V contains no diagonal part (part 
which commutes with H ~ and causes dissipation in a description based on 
the subdynamics of H ~ This has been extensively discussed in ref. 3. 

We consider systems for which the interactions are sufficiently weak. 
The total propagator is given in (2.16) and (2.17). Since the operators 
rid/... ~(  involve repeated commutators, we will for simplicity consider the 
correspondence limit for the case of electrical conduction, F(t)=qEz( t ) ,  
A = Z i  (z i -z i ,  eq). Then, from (2.6), denoting by {, } the Poisson bracket, 

-- m . #vi, z (3.2) 
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For the total propagator we now have 

exp[--if~YF(t')dt' 1 

(q) o = [exp(-iL~~ - d~ 1 { e x p [ - i S ( t - r l ) ] }  E~(~I) 

x ~ 8@,.z exp( - iL-q~rt) 

+ fo dr2 fo2d'cl {exp[-iS(t-z2)]} E~(r2) 

• ~ ~ (exp[- iSq( 'c2-  r l ) ] )  E~('cl) 

(3.3) 

Next, in the propagators without field, exp(-iLPt), we carry through the 
Van Hove limit 2 ~ 0, t--* oo, 22t = const. This can be done with a "two- 
resolvent method" applied to the expression 

[exp(-i~.a~t)lK:exp[-i(H~ + 2V)t]Kexp[i(H~ + 2V)t] (3.4) 

(see ref. 3) or by using projection operators (9/~K=Kd and ( 1 - ~ ) K = K n d  
to split the differential equation 

dK/dt = -i~q~K = (1/hi)[ H ~ + 2V, K] (3.5) 

into parts which are diagonal and nondiagonal in the representation of H ~ 
(see ref. 7). The parts Kd R and Kffa, with superscript R denoting the reduced 
operators after the Van Hove limit, are later reunited. Very elaborate 
calculations yield the result 

KR(t)=limlim[exp(-iS~t)]K= {exp[- (Ad+iSf~ (3.6) 
2, t th 

where lim;_,t denotes the Van Hove limit; ~0  is the interaction Liouvillian, 
5r176 (1/h)[H ~ K], and Ad is the master operator in diagonal Liouville 
space [first introduced in ref. 3, Eq. (6.4)], 

AdK= ~ ]7)(~1 [ W`/~,,(yl KI?) - W~,,̀ /(7"} KI7" ) ] 
7"/" 

(3.7) 
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where W~/, = WT,,~ is given by Fermi's golden rule 

Wv~,, = (2rc22/h)] <71 VlT" )12 fi(~ - ~,,) (3.8) 

The Van Hove limit drastically alters the behavior of the Heisenberg 
operators and of the correlation functions, since A d has positive- 
semidefinite eigenvalues, (~~ Integrals like (1.10), which in Kubo's theory 
have only formal validity, now converge and exist, as amply discussed in 
ref, 3. 

We now enter the result (3.6) in all terms e x p ( - i Y t )  of Eq. (3.3) and 
resum the series. We then obtain 

lira lira exp - i s F(t') dt' 
2, t th  

=expI-(Ad+is176 (3.9) 

Next we examine the result pertaining to (2.19). The propagator (3.9) 
is to act on p.q = [exp( - f lH~ where H ~ contains a part (1/2)Zi mv~z. 
Thus, O/~Viz ~ mv~/kT. Let the relaxation time z71 be the smalles,t non-zero 
eigenvalue of Ad/n, where n is the number of electrons. Then the field term 
in (3.9) is negligible if 

1 >> qEz(vz____.__~) (3.10) 
"~r k T  

Or, if 2 =  <vz>rr~ <v>zr is the mean free path, 

Ez~kT /q2  (3.11) 

Let 2 = 1000 ~, T =  300 K. Then this requires E, ~ 2.5 • 103 V/cm. This 
estimate is certainty different than van Kampen's (1) E ~  10 -18 V/cm! Thus, 
for realistic electric fields the replacement of exp( - iLf t )  for the full 
propagator is hereby justified. 

To finish the result (2.19) in the Van Hove limit, we need poq= 
[ exp ( - f lH~  in the subdynamics condidered; then, 

{exp[ --(Aa + / S ~  }Peq = Peq (3.12) 

This is seen by series expansion: S o exp( - - f lH~ also, Peq is an eigen- 
vector of Ao with eigenvalue zero: 

AdPeq = Z [7) (71W-. ' , [exp( - r  e x p ( - ~ 7 " ) ] / ~  = 0 (3.13) 
~-/' 



Van Kampen's Objections to Linear Response Theory 59 

by virtue of the delta function in (3.8). We now use Kubo's lemma (2.27) 
with H ~  H ~ and add the superscript R for the operators after the Van 
Hove limit. Then (2.19) yields the result 

(J~(t) ) = fo dr f f  dfl' (JIA(- ih// ' ){exp[(-Aa + LLf~ r)]} JRBF('C))eq 

(3.14) 

Here fA(--ih~') is the interaction operator 

J~A(- ihp')= Eexp(h/3'Y~ JAR = exp(p'H~ ~ (3.15) 

We also have in (3.4) the reduced operator 

JR(t) = {exp[(--Ad + iSP~ t] }jR (3.16) 

Letting je(s) and f(s) be the Laplace transforms of (Je(t)) and F(t), 
respectively, then with jB(s)=L,~A(s)f(s) and s =  io +0, we find for the 
sinusoidal response 

LBA(iOJ)= f'e-i~t fo~dfl (J](-ihfl')J~(t) )eq (3.17) 

We also note that JA R and jR are more than the Schr6dinger operators 
and/~; we have JAR-- -A~A +Jl (see ref. 7) and similarly for J~. In (3.17) 
the time integral converges and can be carried out, 

L,~(i~o) = dE' J~(-ihfl') Ad_iSao+i~ ~ 

Equations (3.17) and (3.18) are the proper Kubo forms for systems with 
weak interactions, with the linear response approximation now being 
justified, provided the limitations (3.10) or (3.11) are observed. 
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